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Fig. 2. Comparison of numerical calculations and the analytical ap-
proximation for lV1. Distance isindB: loglokop. Results are shown for
kolr = 0.05, 0.15, and 0.25.

and kOp(2010g101kopl). The agreement between the numerical

calculations and analytical approximation gets progressively
worse as the substrate thickness is increased. The largest error
occurs forthevdueof kOp near –13dB. Thereasonis that the
approximation for V in (19) has two I/p terms in it. These
terms dominate all others for small values of p. The first of
these terms is due to the approximate expression for p >> h. The
second is due to the direct term in the quasi-static approxima-
tion. The direct term should dominate fordistances close to the
dipole, as can be seen from the numerical results. The first I/p
term is assumed to be negligible compared with the direct term,
as it is smaller bya factor ]kOh12.It is seen from (19) that this is
true when

(22)

This condition is violated for values of koh = 0.25. The solution

to this problem is that one should not include the first lip term

for small values of p. (The surface wave term should not be

included either. This, however, gives negligible corrections, as

the surface wave will go as log Ip] for small values of p, which is

much smaller than 1/p.)
The maximum relative error for the points plotted for /coh =

0.05 is about 1.5Y. if the l\p term mentioned above is left out

for p <h. Similarly, the maximum relative error for kolr = 0.15

is approximately 670, and for koh = 0.25 is approximately 11%

for the points plotted.
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Efficient Computation of the Free-Space Periodic

Green’s Function

Surendra Singh and Ritu Singh

Abstract —The application of Shanks’s transform is shown to improve

the convergence of the series representing the doubly infinite free-space

periodic Green’s function. Higher order Shanks transforms are com-
puted via Wynn’s ● algorithm. Numerical resnlts confirm that a dra-
matic improvement in the convergence rate is obtained for the “on-

plane” case, in which the series converges extremely slowly. In certain
instances, the computation time can be rednced by as much as a factor

of a few thonsands. A relative error measnre versus the number of terms
taken in the series is plotted for various valnes of a convergence factor
as the observation point is varied within a unit cell. Computation times
are also provided.

I. INTRODUCTION

The problem of determining the radiation or scattering from a

periodic array geometry is formulated in terms of an integral

equation. The integral equation is solved numerically via the

method of moments. In the mom&t method solution the un-

known surface current or field is expanded either in terms of

entire domain basis functions at the expense of generality or in

terms of subdomain basis functions at the expense of higher

computation cost. In order to achieve the degree of generality

required in developing general-purpose computer codes, it is

necessary to employ subsectionally defined basis functions. This

requires repeated computations of the free-space periodic

Green’s function. The Green’s function for a two-dimensional

periodic array (of point sources of radiating elements or con-

ducting strips) is represented in terms of a doubly infinite series.

This series converges extremely slowly as the observation point

approaches the source plane. In the moment method solution

for the current distribution on the radiator in the reference cell

of a two-dimensional infinite periodic array of radiating ele-

ments, the observation point lies in the plane of the array. This

case is referred to as the on-plane case, and the series has the

slowest convergence rate. In comparison with other methods

that make use of Kummer’s transform to accelerate the conver-
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gence of the doubly infinite series and thus add complexity as

well as evaluation of additional terms, the Shanks transform is

simple and efficient.

Methods to enhance the convergence of the periodic Ekeen’s

function series, which make use of the spectral- and spatial-

domain formulations in conjunction with Kummer’:s and

Poisson’s transformations, have been suggested [1]–[6]. It has

been shown in [71 that an application of Shanks’s transfclrm [8]

to the series representing the Green’s function for a one-dimen-

sional array of point sources accelerates the convergence of the

series. In this work, it is sh~own that the application of Wynn’s E

algorithm [9], which implements higher orders of Shanks’s trans-

form, improves the convergence rate of the series representing

the free-space periodic Green’s function for a two-dimensional

array of point sources.

II. FREE SPACE PERIODIC GREEN’S FUNCTION

The free-space periodic Green’s function is given by [10]

where r is the location of the observation point and it is

assumed without the loss of generality that the reference source

is at the origin. Also, A is the area of the unit cell and

/ ——

k

[

Jkz--lk,mnl’, kac,mnl

zmn =

-j- “lk..l

(2)

k ,~n=(m+ mo)kl+(n+no)k, (3)

where

‘1=(=)’‘2=(;)’ (4)

Here kl and k2 are the reciprocal lattice base vectors, defined

in (4) for a rectangular lattice; Dx and Dy are the perioclicities

in the x and y directions respectively; m. and no are the

interelement phase shift constants; and k is the free-space

wavenumber. The series in (1) converges rapidly whenever z + O,

which is the “off-plane” case, in which the exponential factor

aids in the convergence. As the observation point approaches

the plane of the array, i.e., as z -+ O, the series in (1) converges

extremely slowly. Because of this unattractive feature of the

Green’s function series the use of subdomain basis functions in

a moment method solution~ becomes computationally expensive.

In this work, we make use of Shanks’s transform to accelerate

the summation of this series.

In the application of Shanks’s transform to the double sum-

mation in (l), the transform is first applied to the sequence of

inner partial sums over index n, for a specific value of inclex m,

to arrive at a, convergent sum Sm. After obtaining the minimum

number of these outer partial sums, the transform is applied to

this sequence as well. This process of applying the transform

successively to the inner partial sum (over index n) and the

outer partial sums (over index m) is continued until a prede-

fine convergence criterion is satisfied.

III. NUMERICAL RESULTS

In this section, we present numerical results on the conver-

gence of the series in (1) with and without the application of

Shanks’s transform. A straightforward summation of the series
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Fig. 1. Relative error magnitude versus the number of terms in the
series in (1) for the source point at the origin and the observation point
at (x, y, z) = (0.8 A,0.8A,0.OA).
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Fig. 2. Computation time in seconds versus l/eC for the case in Fig. 1.

is referred to as direct sum. In arriving at the final result for the

direct sum and that using the transform, the summation rmocess

is terminated when a predefine convergence factor, EC, defined

in [2], is satisfied. Without loss of generality, the source point is

taken to be at the origin and the observation point is taken at

different locations in the unit cell. For each case, the series in

(1) is first summed to machine precision. The resulting sum is

then employed in computing a relative error measure for differ-

ent values of eC [2]. The following parameters are taken for the

numerical results in Figs. 1–8: Dx = Dy = 1.2A, m. = no = O, and

A = 1 m. Fig. 1 shows the relative error versus the number of

terms for (x, y, z) = (0.8A, 0.8A, O.OA). The convergence factor is

indicated alongside each point. For EC= 10 – 4, the Shanks trans-

form converges in 200 terms whereas the direct sum takes more

than 100000 terms.

The computation time versus 1/EC for this case is shown in

Fig. 2. At this point, we define a saving factor, which is the ratio
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Fig. 3. Relative error magnitude versus the number of terms in the
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of the time taken by the direct sum to that taken by Shanks’s

transform. For EC= 10’4 and 10 ‘5, saving factors of 130 and

350, respectively, are obtained. For (x, y, z) = (0.6A, 0.6A,0.OA)

the relative error versus the number of terms and the computa-

tion time versus 1/EC are shown in Figs. 3 and 4, respectively.

For EC= 10 ‘5, Shanks’s transform converges in 180 terms and

takes 0.15 s while the direct sum takes 350000 terms and takes

68 s, This results in a saving factor of 453.

The series in (1) converges much slower as the observation

point is taken closer to the source point at the origin. Next, we

take (x, y, z) = (0.4A, 0.4A, O.OA). The relative error and the

computational time for this case are shown in Figs. 5 and 6,

respectively. For e= =10-5, the direct sum converges in 750000

terms while the Shanks transform converges in 365 terms. The

most dramatic results are obtained as the observation point is

moved closer to the source point. We take (x, y, z) =

(0.lA, O.IA, O.OA). Figs. 7 and 8 show the relative error versus the

number of terms and the computation time versus l/eC, respec-

tively. For EC= 2x 10-5, the Shanks transform converges in 800

terms and takes 0.9 s. The direct sum does not converge prop-

erly, as shown by the fluctuation in the relative error. However,

the prespecified convergence criterion is met in -8.65 million
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Fig. 5. Relative error magnitude versus the number of terms in the
series in (1) for the source point at the origin and the observation point
at (x, y, z) = (0.4A, 0.4A, O.OA).
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Fig. 7. Relative error magnitude versus the number of terms in the
series in (1) for the source point at the origin and the observation point
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terms and takes 2400 s to compute. The saving factor for this

case is 2667.

IV. CONCLUSION

The series representing the free-space periodic Green’s func-

tion has been accelerated by a simple application of Shanks’s

transform. Higher order transforms are easily computed via

Wynn’s E algorithm. It has been shown that the computation

time can be reduced by a factor of a few hundreds and, in some

instances, a few thousands. This is a significant reduction in

computation time as the Green’s function is evaluated repeat-

edly in a moment method solution. The transform is very simple

to implement and is extremely efficient, as shown by the numeri-

cal results.
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Capacitance of a Circular Symmetric Model of a Via

Hole Including Finite Ground Plane Thickness

Peter Kok and Daniel De Zutter

Abstract —The capacitance of a simplified model of a via hole is

calculated based on an integral equation approach for the surface
charge density. The finite grouud plane thickness is explicitly taken into

account. Nnmerical data are obtained for a large range of realistic

geometrical data. The relative importance of the contribution to the total

capacitance coming from the ground plane opening is explicitly evalu-

ated. It is found that the via capacitance is proportional to the square
root of its height, at least for the range of geometrical data considered in
this paper.

I. INTRODUCTION

Microstrips and striplines in printed circuit board (PCB) tech-

nology for high-frequency/high-speed controlled impedance

transport of signals have been extensively studied and modeled

[11. This is much less the case for printed wire technology such

as Multiwire @ or Microwire @ [2], [3]. The parasitic effects

caused by discontinuities present in both technologies, such as

line crossings, pads, lands, and via holes, form a quite important

and still relatively new research topic [4], [5].

In this paper attention is focused on the capacitance of via

holes. Via holes provide the connection between lines located in

different layers of a multilayered board and therefore have to

cross at least one ground plane. Measurements clearly indicate

that the effect of realistic via holes is mainly capacitive.

Earlier publications [6], [7] calculate the capacitance and

inductance of vias between two different lines above the same

ground plane. In [8], capacitance and inductance are calculated

for a via hole crossing an infinitely thin ground plane. In this

paper, the capacitance of a via hole crossing a ground plane

with finite thickness is calculated. To simplify the analysis we

have neglected the lines connected by the via.

The formulation of the problem is based on an integral

equation for the surface charges combined with an analytical

solution at the ground plane opening. The behavior of the via

hole capacitance is explicitly studied in terms of the geometrical
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