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Fig. 2. Comparison of numerical calculations and the analytical ap-
proximation for |V]. Distance is in dB: log,, k,p. Results are shown for
koh =0.05, 0.15, and 0.25.

and kq,p(20log,, lkopl). The agreement between the numerical
calculations and analytical approximation gets progressively
worse as the substrate thickness is increased. The largest error
occurs for the value of k,p near —13 dB. The reason is that the
approximation for ¥ in (19) has two 1/p terms in it. These
terms dominate all others for small values of p. The first of
these terms is due to the approximate expression for p > 4. The
second is due to the direct term in the quasi-static approxima-
tion. The direct term should dominate for distances close to the
dipole, as can be scen from the numerical results. The first 1/p
term is assumed to be negligible compared with the direct term,
as it is smaller by a factor |k0h|2. It is seen from (19) that this is
true when

2
r

(er - l)z(er + 1) .

This condition is violated for values of ky# = 0.25. The solution
to this problem is that one should not include the first 1 /p term
for small values of p. (The surface wave term should not be
included either. This, however, gives negligible corrections, as
the surface wave will go as log |p| for small values of p, which is
much smaller than 1/p.)

The maximum relative error for the points plotted for kyh =
0.05 is about 1.5% if the 1/p term mentioned above is left out
for p < A. Similarly, the maximum relative error for kyh = 0.15
is approximately 6%, and for kyh = 0.25 is approximately 11%
for the points plotted.

lkhol* <

(22)
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Efficient Computation of the Free-Space Periodic
Green’s Function

Surendra Singh and Ritu Singh

Abstract —The application of Shanks’s transform is shown to improve
the convergence of the series representing the doubly infinite free-space
periodic Green’s function. Higher order Shanks transforms are com-
puted via Wynn’s ¢ algorithm. Numerical results confirm that a dra-
matic improvement in the convergence rate is obtained for the “on-
plane” case, in which the series converges extremely slowly. In certain
instances, the computation time can be reduced by as much as a factor
of a few thousands. A relative error measure versus the number of terms
taken in the series is plotted for various values of a convergence factor
as the observation point is varied within a unit cell. Computation times
are also provided.

I. INTRODUCTION

The problem of determining the radiation or scattering from a
periodic array geometry is formulated in terms of an integral
equation. The integral equation is solved numerically via the
method of moments. In the moment method solution the un-
known surface current or field is expanded either in terms of
entire domain basis functions at the expense of generality or in
terms of subdomain basis functions at the expense of higher
computation cost. In order to achieve the degree of generality
required in developing general-purpose computer codes, it is
necessary to employ subsectionally defined basis functions. This
requires repeated computations of the free-space periodic
Green’s function. The Green’s function for a two-dimensional
periodic array (of point sources of radiating elements or con-
ducting strips) is represented in terms of a doubly infinite series.
This series converges extremely slowly as the observation point
approaches the source plane. In the moment method solution
for the current distribution on the radiator in the reference cell
of a two-dimensional infinite periodic array of radiating ele-
ments, the observation point lies in the plane of the array. This
case is referred to as the on-plane case, and the series has the
slowest convergence rate. In comparison with other methods
that make use of Kummer’s transform to accelerate the conver-

Manuscript received October 23, 1990; revised February 14, 1991.

The authors are with the Department of Electrical Engineering,
University of Tulsa, Tulsa, OK 74104.

IEEE Log Number 9100146.

0018-9480,/91 /0700-1226$01.00 ©1991 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 7, JULY 1991

gence of the doubly infinite series and thus add complexity as
well as evaluation of additional terms, the Shanks transform is
simple and efficient.

Methods to enhance the convergence of the periodic Green’s
function series, which make use of the spectral- and spatial-
domain formulations in conjunction with Kummer’s and
Poisson’s transformations, have been suggested [1]-[6]. It has
been shown in [7] that an application of Shanks’s transform [8]
to the series representing the Green’s function for a one-dimen-
sional array of point sources accelerates the convergence of the
series. In this work, it is shown that the application -of Wynn’s
algorithm [9], which implements higher orders of Shanks’s trans-
form, improves the convergence rate of the series representing
the free-space periodic Green’s function for a two-dimensional
array of point sources.

II. Free Space Periobic GREEN’S FUNCTION
The free-space periodic Green’s function is given by {10]
+ 0 e 00 1
G r)= N ——-——-————e_/k:mnlzle_fktmn'r ]_
(r) ,,,:Z_m,,fiwmk (1)

zmn

where r is the location of the observation point and it is
assumed without the loss of generality that the reference source
is at the origin. Also, A4 is the area of the unit cell and

K21k, |*, k<lk

tmn tl?’ll’ll

©)

zmn
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—J |ktmn| _kzv k<|ktmn]

ktmn = (m + mO)kl + (I’l + nO)kZ

L (ZW)A f (2#)A
= —— x = s y‘
1 D, 2 D,

Here k; and k, are the reciprocal lattice base vectors, defined
in (4) for a rectangular lattice; D, and D, are the periodicities
in the x and y directions respectively; m, and n, are the
interelement phase shift constants; and k& is the free-space
wavenumber. The series in (1) converges rapidly whenever z = 0,
which is the “off-plane” case, in which the exponential factor
aids in the convergence. As the observation point approaches
the plane of the array, i.e., as z — 0, the series in (1) converges
extremely slowly. Because of this unattractive feature of the
Green’s function series the use of subdomain basis functions in
a moment method solution becomes computationally expensive.
In this work, we make use of Shanks’s transform to accelerate
the summation of this series.

In the application of Shanks’s transform to the double sum-
mation in (1), the transform is first applied to the sequence of
inner partial sums over index n, for a specific value of index m,
to arrive at a convergent sum §,,. After obtaining the minimum
number of these outer partial sums, the transform is applied to
this sequence as well. This process of applying the transform
successively to the inner partial sum (over index n) and the
outer partial sums (over index m) is continued until a prede-
fined convergence criterion is satisfied.

€)

where

“4)

III. NuMmEericaL REesuLTs

In this section, we present numerical results on the conver-
gence of the series in (1) with and without the application of
Shanks’s transform. A straightforward summation of the series
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Fig. 1. Relative error magnitude versus the number of terms in the

series in (1) for the source point at the origin and the observation point
at (x,y,2)=(0.81,0.81,0.0A).
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Fig. 2. Computation time in seconds versus 1 /e, for the case in Fig. 1.

is referred to as direct sum. In arriving at the final resulit for the
direct sum and that using the transform, the summation process
is terminated when a predefined convergence factor, €., defined
in [2], is satisfied. Without loss of generality, the source point is
taken to be at the origin and the observation point is taken at
different locations in the unit cell. For each case, the series in
(1) is first summed to machine precision. The resulting sum is
then employed in computing a relative error measure for differ-
ent values of €, [2]. The following parameters are taken for the
numerical results in Figs. 1-8: D, = D, =1.2A, my=n,=0, and
A =1 m. Fig. 1 shows the relative error versus the number of
terms for (x, y, z) =(0.81,0.8)1,0.01). The convergence factor is
indicated alongside each point. For ¢, =10~*, the Shanks trans-
form converges in 200 terms whereas the direct sum takes more
than 100000 terms.

The computation time versus 1/e, for this case is shown in
Fig. 2. At this point, we define a saving factor, which is the ratio
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Fig. 3. Relative error magnitude versus the number of terms in the
series in (1) for the source point at the origin and the observation point
at (x,y,z)=(0.6A,0.6A,0.01).
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Fig. 4. Computation time in seconds versus 1/ ¢, for the case in Fig. 3.

of the time taken by the direct sum to that taken by Shanks’s
transform. For €, = 10~* and 1073, saving factors of 130 and
350, respectively, are obtained. For (x,y, z) =(0.64,0.61,0.0A)
the relative error versus the number of terms and the computa-
tion time versus 1/¢, are shown in Figs. 3 and 4, respectively.
For €. =107>, Shanks’s transform converges in 180 terms and
takes 0.15 s while the direct sum takes 350000 terms and takes
68 s. This results in a saving factor of 453.

The series in (1) converges much slower as the observation
point is taken closer to the source point at the origin. Next, we
take (x,y,z)=(0.4A,04A,0.01). The relative error and the
computational time for this case are shown in Figs. 5 and 6,
respectively. For e, =107°, the direct sum converges in 750000
terms while the Shanks transform converges in 365 terms. The
most dramatic results are obtained as the observation point is
moved closer to the source point. We take (x,y,z)=
(0.14,0.11,0.0)). Figs. 7 and 8 show the relative error versus the
number of terms and the computation time versus 1/¢,, respec-
tively. For e, =2 X 1073, the Shanks transform converges in 800
terms and takes 0.9 s. The direct sum does not converge prop-
erly, as shown by the fluctuation in the relative error. However,
the prespecified convergence criterion is met in -8.65 million
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Fig. 8. Computation time in seconds versus 1/ ¢, for the case in Fig. 7.

terms and takes 2400 s to compute. The saving factor for this
case is 2667.

IV. CoNcLusioN

The series representing the free-space periodic Green’s func-
tion has been accelerated by a simple application of Shanks’s
transform. Higher order transforms are easily computed via
Wynn’s e algorithm. It has been shown that the computation
time can be reduced by a factor of a few hundreds and, in some
instances, a few thousands. This is a significant reduction in
computation time as the Green’s function is evaluated repeat-
edly in a moment method solution. The transform is very simple
to implement and is extremely efficient, as shown by the numeri-
cal results.
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Capacitance of a Circular Symmetric Model of a Via
Hole Including Finite Ground Plane Thickness

Peter Kok and Daniél De Zutter

Abstract —The capacitance of a simplified model of a via hole is
calculated based on an integral equation approach for the surface
charge density. The finite ground plane thickness is explicitly taken into
account. Numerical data are obtained for a large range of realistic
geometrical data. The relative importance of the contribution to the total
capacitance coming from the ground plane opening is explicitly evalu-
ated. It is found that the via capacitance is proportional to the square
root of its height, at least for the range of geometrical data considered in
this paper.

I. INTRODUCTION

Microstrips and striplines in printed circuit board (PCB) tech-
nology for high-frequency/high-speed controlled impedance
transport of signals have been extensively studied and modeled
[1]. This is much less the case for printed wire technology such
as Multiwire® or Microwire® [2], [3]. The parasitic effects
caused by discontinuities present in both technologies, such as
line crossings, pads, lands, and via holes, form a quite important
and still relatively new research topic [4], [5].

In this paper attention is focused on the capacitance of via
holes. Via holes provide the connection between lines located in
different layers of a multilayered board and therefore have to
cross at least one ground plane. Measurements clearly indicate
that the effect of realistic via holes is mainly capacitive.

Earlier publications [6], [7] calculate the capacitance and
inductance of vias between two different lines above the same
ground plane. In [8], capacitance and inductance are calculated
for a via hole crossing an infinitely thin ground plane. In this
paper, the capacitance of a via hole crossing a ground plane
with finite thickness is calculated. To simplify the analysis we -
have neglected the lines connected by the via.

The formulation of the problem is based on an integral
equation for the surface charges combined with an analytical
solution at the ground plane opening. The behavior of the via
hole capacitance is explicitly studied in terms of the geometrical
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